A note on approximating the Black and Scholes call formula with hyperbolic tangents
Year of publication: |
2020
|
---|---|
Authors: | Mininni, Michele |
Other Persons: | Orlando, Giuseppe (contributor) ; Taglialatela, Giovanni (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Black-Scholes-Modell | Black-Scholes model | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Optionspreistheorie | Option pricing theory |
Extent: | 1 Online-Ressource (12 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 20, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.3266556 [DOI] |
Classification: | G10 - General Financial Markets. General ; C02 - Mathematical Methods ; G12 - Asset Pricing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Challenges in Approximating the Black and Scholes Call Formula with Hyperbolic Tangents
Mininni, Michele, (2020)
-
Bueno-Guerrero, Alberto, (2020)
-
Transform Analysis for Pricing American Options Under Low-Dimensional Stochastic Volatility Models
Beliaeva, Natalia, (2009)
- More ...
-
A Generalized Derivation of The Black-Scholes Implied Volatility Through Hyperbolic Tangents
Mininni, Michele, (2022)
-
Challenges in approximating the Black and Scholes call formula with hyperbolic tangents
Mininni, Michele, (2021)
-
Challenges in Approximating the Black and Scholes Call Formula with Hyperbolic Tangents
Mininni, Michele, (2020)
- More ...