A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic
Recently, Ord and Getis (Ann Reg Sci 48:529–539, <CitationRef CitationID="CR15">2012</CitationRef>) developed a local statistic <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>H</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation>, called local spatial heteroscedasticity statistic, to identify boundaries of clusters and to describe the nature of heteroscedasticity within clusters. Furthermore, in order to implement the hypothesis testing, Ord and Getis suggested a chi-square approximation method to approximate the null distribution of <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$H_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>H</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation>, but they said that the validity of the chi-square approximation remains to be investigated and some other approximation methods are still worthy of being developed. Motivated by this suggestion, we propose in this paper a bootstrap procedure to approximate the null distribution of <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$H_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>H</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> and conduct some simulation to empirically assess the validity of the bootstrap and chi-square methods. The results demonstrate that the bootstrap method can provide a more accurate approximation than the chi-square method at the cost of more computation time. Moreover, the power of <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$H_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>H</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> in identifying boundaries of clusters is empirically examined using the proposed bootstrap method to compute <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$p$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>p</mi> </math> </EquationSource> </InlineEquation> values of the tests, and the multiple comparison issue is also discussed. Copyright Springer-Verlag Berlin Heidelberg 2014
Year of publication: |
2014
|
---|---|
Authors: | Xu, Min ; Mei, Chang-Lin ; Yan, Na |
Published in: |
The Annals of Regional Science. - Western Regional Science Association - WRSA. - Vol. 52.2014, 3, p. 697-710
|
Publisher: |
Western Regional Science Association - WRSA |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic
Xu, Min, (2014)
-
A unified bootstrap test for local patterns of spatiotemporal association
Yan, Na, (2015)
-
Wang, Chaojun, (2012)
- More ...