A novel trace test for the mean parameters in a multivariate growth curve model
A trace test for the mean parameters of the growth curve model is proposed. It is constructed using the restricted maximum likelihood followed by an estimated likelihood ratio approach. The statistic reduces to the Lawley-Hotelling trace test for the Multivariate Analysis of Variance (MANOVA) models. Our test statistic is, therefore, a natural extension of the classical trace test to GMANOVA models. We show that the distribution of the test under the null hypothesis does not depend on the unknown covariance matrix [Sigma]. We also show that the distributions under the null and alternative hypotheses can be represented as sums of weighted central and non-central chi-square random variables, respectively. Under the null hypothesis, the Satterthwaite approximation is used to get an approximate critical point. A novel Satterthwaite type approximation is proposed to obtain an approximate power. A simulation study is performed to evaluate the performance of our proposed test and numerical examples are provided as illustrations.
Year of publication: |
2011
|
---|---|
Authors: | Hamid, Jemila S. ; Beyene, Joseph ; von Rosen, Dietrich |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 102.2011, 2, p. 238-251
|
Publisher: |
Elsevier |
Keywords: | Estimated likelihood Growth curve model Lawley-Hotelling trace test Restricted likelihood Satterthwaite approximation Sums of weighted chi-squares |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Weighted kernel Fisher discriminant analysis for integrating heterogeneous data
Hamid, Jemila S., (2012)
-
Application of skew-normal distribution for detecting differential expression to microRNA data
Hossain, Ahmed, (2015)
-
A Multivariate Growth Curve Model for Ranking Genes in Replicated Time Course Microarray Data
Hamid, Jemila, (2009)
- More ...