A numerical analysis of the evolutionary stability of learning rules
In this paper, we define an evolutionary stability criterion for learning rules. Using simulations, we then apply this criterion to three types of symmetric 2x2 games for a class of learning rules that can be represented by the parametric model of Camerer and Ho [1999. Experience-weighted attraction learning in normal form games. Econometrica 67, 827-874]. This class contains stochastic versions of reinforcement and fictitious play as extreme cases. We find that only learning rules with high or intermediate levels of hypothetical reinforcement are evolutionarily stable, but that the stable parameters depend on the game.
Year of publication: |
2008
|
---|---|
Authors: | Josephson, Jens |
Published in: |
Journal of Economic Dynamics and Control. - Elsevier, ISSN 0165-1889. - Vol. 32.2008, 5, p. 1569-1599
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
A numerical analysis of the evolutionary stability of learning rules
Josephson, Jens, (2001)
-
Stochastic adaption in finite games played by heterogeneous populations
Josephson, Jens, (2001)
-
Evolution and learning in games
Josephson, Jens, (2001)
- More ...