A protective estimator for longitudinal binary data subject to non-ignorable non-monotone missingness
In longitudinal studies missing data are the rule not the exception. We consider the analysis of longitudinal binary data with non-monotone missingness that is thought to be non-ignorable. In this setting a full likelihood approach is complicated algebraically and can be computationally prohibitive when there are many measurement occasions. We propose a 'protective' estimator that assumes that the probability that a response is missing at any occasion depends, in a completely unspecified way, on the value of that variable alone. Relying on this 'protectiveness' assumption, we describe a pseudolikelihood estimator of the regression parameters under non-ignorable missingness, without having to model the missing data mechanism directly. The method proposed is applied to CD4 cell count data from two longitudinal clinical trials of patients infected with the human immunodeficiency virus. Copyright 2005 Royal Statistical Society.
Year of publication: |
2005
|
---|---|
Authors: | Fitzmaurice, Garrett M. ; Lipsitz, Stuart R. ; Molenberghs, Geert ; Ibrahim, Joseph G. |
Published in: |
Journal of the Royal Statistical Society Series A. - Royal Statistical Society - RSS, ISSN 0964-1998. - Vol. 168.2005, 4, p. 723-735
|
Publisher: |
Royal Statistical Society - RSS |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Sinha, Sanjoy K., (2011)
-
Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop-Outs
Fitzmaurice, Garrett M., (2001)
-
A Note on Permutation Tests for Variance Components in Multilevel Generalized Linear Mixed Models
Fitzmaurice, Garrett M., (2007)
- More ...