A regularized high-dimensional positive definite covariance estimator with high-frequency data
Year of publication: |
2024
|
---|---|
Authors: | Cui, Liyuan ; Hong, Yongmiao ; Li, Yingxing ; Wang, Junhui |
Published in: |
Management science : journal of the Institute for Operations Research and the Management Sciences. - Hanover, Md. : INFORMS, ISSN 1526-5501, ZDB-ID 2023019-9. - Vol. 70.2024, 10, p. 7242-7264
|
Subject: | covariance estimation | high frequency | large dimension | nuclear norm | vast portfolio evaluation | weak factors | weighted group-LASSO | Korrelation | Correlation | Schätztheorie | Estimation theory | Portfolio-Management | Portfolio selection | Kapitaleinkommen | Capital income | Varianzanalyse | Analysis of variance | Volatilität | Volatility | Elektronisches Handelssystem | Electronic trading | Faktorenanalyse | Factor analysis | CAPM |
-
Realized regression with asynchronous and noisy high frequency and high dimensional data
Chen, Dachuan, (2024)
-
Sparse approximate factor estimation for high-dimensional covariance matrices
Daniele, Maurizio, (2020)
-
Factor State-Space Models for High-Dimensional Realized Covariance Matrices of Asset Returns
Gribisch, Bastian, (2018)
- More ...
-
Solving Euler equations via two-stage nonparametric penalized splines
Cui, Liyuan, (2021)
-
Solving Euler Equations via Two-Stage Nonparametric Penalized Splines
Cui, Liyuan, (2020)
-
Time-varying factor selection : a sparse fused GMM approach
Cui, Liyuan, (2023)
- More ...