A retrospective approximation approach for smooth stochastic optimization
| Year of publication: |
2025
|
|---|---|
| Authors: | Newton, David ; Bollapragada, Raghu ; Pasupathy, Raghu ; Yip, Nung Kwan |
| Published in: |
Mathematics of operations research. - Hanover, Md. : INFORMS, ISSN 1526-5471, ZDB-ID 2004273-5. - Vol. 50.2025, 3, p. 2301-2332
|
| Subject: | machine learning | simulation optimization | stochastic optimization | sample average approximation | stochastic approximation | retrospective approximation | sample selection | Stochastischer Prozess | Stochastic process | Theorie | Theory | Stichprobenerhebung | Sampling | Mathematische Optimierung | Mathematical programming | Simulation | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm |
-
Adaptive coordinate sampling for stochastic primal-dual optimization
Liu, Huikang, (2022)
-
Efficient solution selection for two-stage stochastic programs
Fei, Xin, (2019)
-
Importance sampling in stochastic programming : a Markov chain Monte Carlo approach
Parpas, Panos, (2015)
- More ...
-
Leemis, Lawrence M., (2019)
-
An algorithm for fast generation of bivariate poisson random vectors
Shin, Kaeyoung, (2010)
-
Moment-ratio diagrams for univariate distributions
Vargo, Erik, (2017)
- More ...