A semi-empirical approach using gradient boosting and kk-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
Year of publication: |
July-September 2016
|
---|---|
Authors: | Huang, Jing ; Perry, Matthew |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 32.2016, 3, p. 1081-1086
|
Subject: | Solar power | Probabilistic forecasting | Gradient boosting | kk-nearest neighbors regression | GEFCom2014 | Prognoseverfahren | Forecasting model | Sonnenenergie | Solar energy | Regressionsanalyse | Regression analysis | Theorie | Theory | Wahrscheinlichkeitsrechnung | Probability theory |
-
Probabilistic gradient boosting machines for GEFCom2014 wind forecasting
Landry, Mark, (2016)
-
A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
Juban, Romain, (2016)
-
Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data
David, Mathieu, (2018)
- More ...
-
Kolas, Dave, (2012)
-
What can ants tell us about collective behavior during a natural catastrophe?
Cassill, Deby L., (2015)
-
Business and financial information integration and voluntary management earnings forecasts
Huang, Jing, (2020)
- More ...