A spatial-temporal dynamic attention-based Mamba model for multi-type passenger demand prediction in multimodal public transit systems
| Year of publication: |
2025
|
|---|---|
| Authors: | Shao, Zhiqi ; Xi, Haoning ; Hensher, David A. ; Wang, Ze ; Gong, Xiaolin ; Gao, Junbin |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ISSN 1878-5794, ZDB-ID 2013782-5. - Vol. 202.2025, Art.-No. 104282, p. 1-42
|
| Subject: | AI and deep learning | Multi-type passenger demand prediction | Multimodal public transit systems | Sparse attention | Spatial–temporal dynamic fusion | STDAtt-Mamba | Öffentlicher Nahverkehr | Local public transport | Theorie | Theory | Prognoseverfahren | Forecasting model | Personenverkehr | Passenger transport | Nachfrage | Demand |
-
Shao, Zhiqi, (2025)
-
AI-based neural network models for bus passenger demand forecasting using smart card data
Liyanage, Sohani, (2022)
-
Competition and substitution between public transport modes
Fearnley, Nils, (2018)
- More ...
-
Shao, Zhiqi, (2025)
-
Xi, Haoning, (2025)
-
Mobility as a service (MaaS) : are effort and seamlessness the keys to MaaS uptake?
Hensher, David A., (2022)
- More ...