A statistical learning approach for stock selection in the Chinese stock market
Year of publication: |
2019
|
---|---|
Authors: | Wu, Wenbo ; Chen, Jiaqi ; Xu, Liang ; He, Qingyun ; Tindall, Michael L. |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 5.2019, 20, p. 1-18
|
Subject: | Stock selection | Stock return prediction | Statistical learning | Lasso | Elastic net | Aktienmarkt | Stock market | China | Kapitaleinkommen | Capital income | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model | Schätzung | Estimation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s40854-019-0137-1 [DOI] hdl:10419/237165 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A study of cross-industry return predictability in the Chinese stock market
Ellington, Michael, (2022)
-
Country-level analyst recommendations and international stock market returns
Berkman, Henk, (2019)
-
Empirical asset pricing via machine learning : evidence from the European stock market
Drobetz, Wolfgang, (2021)
- More ...
-
Risk measurement distortion : an improved model of return smoothing
Chen, Jiaqi, (2018)
-
A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection
Wu, Wenbo, (2019)
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
- More ...