A study of the machine learning approach and the MGARCH-BEKK model in volatility transmission
Year of publication: |
2022
|
---|---|
Authors: | Joshi, Prashant ; Wang, Jinghua ; Busler, Michael |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 3, Art.-No. 116, p. 1-9
|
Subject: | MGARCH-BEKK | GA2M | machine learning | volatility spillovers robustness | cryptocurrency | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Virtuelle Währung | Virtual currency | Spillover-Effekt | Spillover effect | ARCH-Modell | ARCH model | Finanzmarkt | Financial market |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15030116 [DOI] hdl:10419/258839 [Handle] |
Classification: | C32 - Time-Series Models ; c58 ; C63 - Computational Techniques |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A study of the machine learning approach and the MGARCH-BEKK model in volatility transmission
Joshi, Prashant, (2022)
-
Volatility spillovers among cryptocurrencies
Smales, Lee A., (2021)
-
Tsiaras, Konstantinos, (2021)
- More ...
-
A study of the machine learning approach and the MGARCH-BEKK model in volatility transmission
Joshi, Prashant, (2022)
-
ANALYZING PERFORMANCE OF GARCH MODELS IN NSE
Joshi, Prashant, (2014)
-
Modeling Volatility in Emerging Stock Markets Of India And China
Joshi, Prashant, (2010)
- More ...