Accelerated windowing for the crew rostering problem with machine learning
Year of publication: |
[2025]
|
---|---|
Authors: | Racette, Philippe ; Quesnel, Frédéric ; Lodi, Andrea ; Soumis, François |
Publisher: |
Montréal (Québec), Canada : GERAD, HÉC Montréal |
Subject: | Crew rostering | crew scheduling | discrete optimization | evolutionary algorithm | machine learning | reinforcement learning | Künstliche Intelligenz | Artificial intelligence | Personaleinsatzplanung | Crew scheduling | Lernprozess | Learning process | Algorithmus | Algorithm | Evolutionärer Algorithmus | Evolutionary algorithm | Theorie | Theory | Lernen | Learning |
Extent: | 1 Online-Ressource (circa 21 Seiten) Illustrationen |
---|---|
Series: | Les cahiers du GERAD. - Montréal (Québec), Canada : GERAD, HÉC Montréal, ZDB-ID 3026340-2. - Vol. G-2025, 24 (March 2025) |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Gaining insight into crew rostering instances through ML-based sequential assignment
Racette, Philippe, (2024)
-
Learning to enumerate shifts for large-scale flexible personnel scheduling problems
Rastgar-Amini, Farin, (2022)
-
Learning to branch for the crew pairing problem
Pereira, Pierre, (2022)
- More ...
-
Gaining insight into crew rostering instances through ML-based sequential assignment
Racette, Philippe, (2024)
-
Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering
Quesnel, Frédéric, (2022)
-
A new heuristic branching scheme for the crew pairing problem with base constraints
Quesnel, Frédéric, (2017)
- More ...