Achieving Reliable Causal Inference with Data-Mined Variables : A Random Forest Approach to the Measurement Error Problem
Year of publication: |
2020
|
---|---|
Authors: | Yang, Mochen |
Other Persons: | McFowland, Edward (contributor) ; Burtch, Gordon (contributor) ; Adomavicius, Gediminas (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Statistischer Fehler | Statistical error | Schätztheorie | Estimation theory | Kausalanalyse | Causality analysis | Induktive Statistik | Statistical inference |
Extent: | 1 Online-Ressource (53 p) |
---|---|
Series: | Kelley School of Business Research Paper ; No. 19-20 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 22, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3339983 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Inference on local average treatment effects for misclassified treatment
Yanagi, Takahide, (2017)
-
Inference on local average treatment effects for misclassified treatment
Yanagi, Takahide, (2019)
-
Yang, Mochen, (2018)
- More ...
-
Yang, Mochen, (2018)
-
Yang, Mochen, (2017)
-
Designing Real-Time Feedback for Bidders in Homogeneous-Item Continuous Combinatorial Auctions
Adomavicius, Gediminas, (2018)
- More ...