Adaptive feasible and infeasible evolutionary search for the knapsack problem with forfeits
Year of publication: |
2025
|
---|---|
Authors: | Zhou, Qing ; Hao, Jin-Kao ; Jiang, Zhong-Zhong ; Wu, Qinghua |
Published in: |
International transactions in operational research : a journal of the International Federation of Operational Research Societies. - Oxford : Wiley-Blackwell, ISSN 1475-3995, ZDB-ID 2019815-2. - Vol. 32.2025, 3, p. 1442-1471
|
Subject: | conflict graph | evolutionary framework | forfeit | heuristic | knapsack | Heuristik | Heuristics | Evolutionsökonomik | Evolutionary economics | Graphentheorie | Graph theory | Ganzzahlige Optimierung | Integer programming | Evolutionärer Algorithmus | Evolutionary algorithm | Mathematische Optimierung | Mathematical programming |
-
Ben Salem, Mariem, (2017)
-
A hybrid evolutionary search for the generalized quadratic multiple knapsack problem
Zhou, Qing, (2022)
-
New genetic algorithm approach for the min-degree constrained minimum spanning tree
Salgueiro, Rui, (2017)
- More ...
-
An effective hybrid search method for the quadratic knapsack problem with conflict graphs
Zhou, Qing, (2024)
-
A hybrid evolutionary search for the generalized quadratic multiple knapsack problem
Zhou, Qing, (2022)
-
An efficient iterated local search for the minimum quasi-clique partitioning problem
Zhou, Qing, (2025)
- More ...