ADAPTIVE POLAR SAMPLING WITH AN APPLICATION TO A BAYES MEASURE OF VALUE-AT-RISK
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, a location-scale transformation and a transformation to polar coordinates are used. After the transformation to polar coordinates, a Metropolis-Hastings algorithm is applied to sample directions and, conditionally on these, distances are generated by inverting the CDF. A sequential procedure is applied to update the location and scale.Tested on a set of canonical models that feature near non-identifiability, strong correlation, and bimodality, APS compares favourably with the standard Metropolis-Hastings sampler in terms of parsimony and robustness. APS is applied within a Bayesian analysis of aGARCH-mixture model which is used for the evaluation of the Value-at-Risk of the return of the Dow Jones stock index.