Adaptive seriational risk parity and other extensions for heuristic portfolio construction using machine learning and graph theory
Year of publication: |
2021
|
---|---|
Authors: | Schwendner, Peter ; Papenbrock, Jochen ; Jaeger, Markus ; Krügel, Stephan |
Published in: |
The journal of financial data science. - New York, NY : Pageant Media, Ltd., ISSN 2640-3951, ZDB-ID 2957666-0. - Vol. 3.2021, 4, p. 65-83
|
Subject: | Künstliche Intelligenz | Artificial intelligence | Graphentheorie | Graph theory | Portfolio-Management | Portfolio selection | Heuristik | Heuristics | Risiko | Risk |
-
Jaeger, Markus, (2021)
-
Beyond risk parity : a machine learning-based hierarchical risk parity approach on cryptocurrencies
Burggraf, Tobias, (2021)
-
Combinatorial Models for Scheduling Sports Tournaments
Ribeiro, Celso C., (2023)
- More ...
-
Jaeger, Markus, (2021)
-
Interpretable Machine Learning for Diversified Portfolio Construction
Jaeger, Markus, (2021)
-
Understanding Machine Learning for Diversified Portfolio Construction by Explainable AI
Jaeger, Markus, (2020)
- More ...