Adaptive seriational risk parity and other extensions for heuristic portfolio construction using machine learning and graph theory
| Year of publication: |
2021
|
|---|---|
| Authors: | Schwendner, Peter ; Papenbrock, Jochen ; Jaeger, Markus ; Krügel, Stephan |
| Published in: |
The journal of financial data science. - New York, NY : Pageant Media, Ltd., ISSN 2640-3951, ZDB-ID 2957666-0. - Vol. 3.2021, 4, p. 65-83
|
| Subject: | Künstliche Intelligenz | Artificial intelligence | Graphentheorie | Graph theory | Portfolio-Management | Portfolio selection | Heuristik | Heuristics | Risiko | Risk |
-
Jaeger, Markus, (2021)
-
Beyond risk parity : a machine learning-based hierarchical risk parity approach on cryptocurrencies
Burggraf, Tobias, (2021)
-
Reduce-then-optimize for the fixed-charge transportation problem
Spieckermann, Caroline, (2025)
- More ...
-
Papenbrock, Jochen, (2020)
-
Interpretable machine learning for diversified portfolio construction
Jaeger, Markus, (2021)
-
Papenbrock, Jochen, (2021)
- More ...