Adjustable robust optimization approach for SVM under uncertainty
| Year of publication: |
2025
|
|---|---|
| Authors: | Hooshmand, F. ; Seilsepour, F. ; MirHassani, S. A. |
| Published in: |
Omega : the international journal of management science. - Oxford [u.a.] : Elsevier, ISSN 1873-5274, ZDB-ID 1491111-5. - Vol. 131.2025, Art.-No. 103206, p. 1-16
|
| Subject: | Adjustable robust optimization | Decomposition-based algorithms | Support vector machine | Three-level optimization | Uncertainty in feature vector | Valid inequalities | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Robustes Verfahren | Robust statistics | Mustererkennung | Pattern recognition | Entscheidung unter Unsicherheit | Decision under uncertainty | Algorithmus | Algorithm | Risiko | Risk |
-
Robust and distributionally robust optimization models for linear support vector machine
Faccini, Daniel, (2022)
-
Profit-based churn prediction based on Minimax Probability Machines
Maldonado, Sebastián, (2020)
-
A novel robust optimization model for nonlinear Support Vector Machine
Maggioni, Francesca, (2025)
- More ...
-
A novel two-phase decomposition-based algorithm to solve MINLP pipeline scheduling problem
Asl, Neda Beheshti, (2022)
-
A heuristic method to find a quick feasible solution based on the ratio programming
Yarahmadi, M. N., (2023)
-
Hooshmand, F., (2023)
- More ...