Adversarial Deep Hedging : Learning to Hedge without Price Process Modeling
Year of publication: |
[2023]
|
---|---|
Authors: | HIRANO, Masanori ; Minami, Kentaro ; Imajo, Kentaro |
Publisher: |
[S.l.] : SSRN |
Subject: | Hedging | Theorie | Theory | Lernprozess | Learning process | Stochastischer Prozess | Stochastic process |
Extent: | 1 Online-Ressource (8 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 24, 2023 erstellt |
Other identifiers: | 10.2139/ssrn.4520273 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Deep Hedging of Derivatives Using Reinforcement Learning
Cao, Jay, (2020)
-
Hedging the drift : learning to optimize under nonstationarity
Cheung, Wang Chi, (2022)
-
Modeling technological change : implications for the global environment
Grübler, Arnulf, (1999)
- More ...
-
Efficient Learning of Nested Deep Hedging using Multiple Options
HIRANO, Masanori, (2023)
-
No-transaction band network : a neural network architecture for efficient deep hedging
Imaki, Shota, (2023)
-
Impact analysis of financial regulation on multi-asset markets using artificial market simulations
Hirano, Masanori, (2020)
- More ...