"An Asymptotic Expansion with Push-Down of Malliavin Weights"
This paper derives asymptotic expansion formulas for option prices and implied volatilities as well as the density of the underlying asset price in a stochastic volatility model. In particular, the integration-by-parts formula in Malliavin calculus and the push-down of Malliavin weights are effectively applied. It provides an expansion formula for generalized Wiener functionals and closed-form approximation formulas in stochastic volatility environment. In addition, it presents applications of the general formula to a local volatility expansion as well as to expansions of option prices for the shifted log-normal model with stochastic volatility. Moreover, with some result of Malliavin calculus in jump-type models, this paper derives an approximation formula for the jump-diffusion model in stochastic volatility environment. Some numerical examples are also shown.