An augmented Lagrangian-type stochastic approximation method for convex stochastic semidefinite programming defined by expectations
Year of publication: |
2025
|
---|---|
Authors: | Zhang, Yule ; Wu, Jia ; Zhang, Liwei |
Published in: |
Operations research letters : a journal of INFORMS devoted to the rapid publication of concise contributions in operations research. - Amsterdam [u.a.] : Elsevier Science, ISSN 0167-6377, ZDB-ID 1467065-3. - Vol. 59.2025, Art.-No. 107221, p. 1-7
|
Subject: | Augmented Lagrangian | Constraint violation regret | Convex stochastic semidefinite optimization | High probability regret bound | Objective regret | Stochastic approximation | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Entscheidung unter Unsicherheit | Decision under uncertainty | Wahrscheinlichkeitsrechnung | Probability theory | Iteratives Verfahren | Approximation method |
-
Stochastic approximation proximal method of multipliers for convex stochastic programming
Zhang, Liwei, (2023)
-
Robustness of optimal portfolios under risk and stochastic dominance constraints
Dupačová, Jitka, (2014)
-
Non-stationary stochastic optimization
Besbes, Omar, (2015)
- More ...
-
Zhang, Liwei, (2022)
-
Stochastic approximation proximal method of multipliers for convex stochastic programming
Zhang, Liwei, (2023)
-
On the upper Lipschitz property of the KKT mapping for nonlinear semidefinite optimization
Zhang, Yule, (2016)
- More ...