An expandable machine learning-optimization framework to sequential decision-making
| Year of publication: |
2024
|
|---|---|
| Authors: | Yilmaz, Dogacan ; Büyüktahtakın, İ. Esra |
| Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 314.2024, 1 (1.4.), p. 280-296
|
| Subject: | (R) Machine learning | Capacitated lot-sizing | Combinatorial optimization | Encoder-decoder | Knapsack | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Losgröße | Lot size | Scheduling-Verfahren | Scheduling problem | Produktionssteuerung | Production control | Ganzzahlige Optimierung | Integer programming | Algorithmus | Algorithm | Entscheidung | Decision |
-
Kwak, Ik-soon, (2011)
-
Larroche, François, (2022)
-
Multi-objective optimization of integrated lot-sizing and scheduling problem in flexible job shops
Rohaninejad, Mohammad, (2016)
- More ...
-
Learning optimal solutions via an LSTM-optimization framework
Yilmaz, Dogacan, (2023)
-
Scenario-dominance to multi-stage stochastic lot-sizing and knapsack problems
Büyüktahtakın, İ. Esra, (2023)
-
Yin, Xuecheng, (2021)
- More ...