An Interpretable Machine Learning Approach to Predicting Customer Behavior on JD.Com
| Year of publication: |
2020
|
|---|---|
| Authors: | Iravani, Foad ; Alizamir, Saed ; Eshragh, Ali ; Bandara, Kasun |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Künstliche Intelligenz | Artificial intelligence | Konsumentenverhalten | Consumer behaviour | Prognoseverfahren | Forecasting model | Theorie | Theory |
| Description of contents: | Abstract [papers.ssrn.com] |
| Extent: | 1 Online-Ressource |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 1, 2020 erstellt Volltext nicht verfügbar |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Risks of observable and unobservable biases in artificial intelligence predicting consumer choice
Teleaba, Florian, (2021)
-
Predicting customers' cross-buying decisions : a two-stage machine learning approach
Kilinc, Mehmet Serdar, (2023)
-
Predicting Consumer Default : A Deep Learning Approach
Albanesi, Stefania, (2019)
- More ...
-
Investment in Wind Energy : The Role of Subsidies
Alizamir, Saed, (2021)
-
On the Financial Inclusion and Sustainability Benefits of Blockchain Adoption in Agriculture
Alizamir, Saed, (2021)
-
An analysis of price vs. revenue protection : government subsidies in the agriculture industry
Alizamir, Saed, (2019)
- More ...