An investigation of the impact of various geographical scales for the specification of spatial dependence
Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the statistical local area-based and grid-based approaches perform equally well for spatially dense data.
Year of publication: |
2014
|
---|---|
Authors: | Kang, Su Yun ; McGree, James ; Baade, Peter ; Mengersen, Kerrie |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 41.2014, 11, p. 2515-2538
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
The use of ZIP and CART to model cryptosporidiosis in relation to climatic variables
Hu, Wenbiao, (2010)
-
Combining Opinions for Use in Bayesian Networks : A Measurement Error Approach
Charisse Farr, A., (2019)
-
Hussein, Tareq, (2014)
- More ...