An iterative method for forecasting most probable point of stochastic demand
Year of publication: |
2014
|
---|---|
Authors: | Behnamian, J. ; Fatemi Ghomi, S. M. T. ; Karimi, B. ; Moludi, M. Fadaei |
Published in: |
Journal of industrial engineering international. - Heidelberg : SpringerOpen, ISSN 2251-712X, ZDB-ID 2664907-X. - Vol. 10.2014, p. 1-9
|
Subject: | Uncertainty | First-order Taylor series expansion | State space models | Most probable point | Forecasting practice | Demand forecasting | Prognoseverfahren | Forecasting model | Theorie | Theory | Wahrscheinlichkeitsrechnung | Probability theory | Stochastischer Prozess | Stochastic process | Zustandsraummodell | State space model | Nachfrage | Demand | Zeitreihenanalyse | Time series analysis |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1007/s40092-014-0064-8 [DOI] hdl:10419/157403 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Macroeconomic forecasting with large stochastic volatility in mean VARs
Cross, Jamie, (2021)
-
Stochastic tail index model for high frequency financial data with Bayesian analysis
Mao, Guangyu, (2018)
-
Can Google search data help predict macroeconomic series?
Niesert, Robin, (2019)
- More ...
-
Behnamian, J., (2017)
-
A multi-phase covering Pareto-optimal front method to multi-objective parallel machine scheduling
Behnamian, J., (2010)
-
Behnamian, J., (2010)
- More ...