An optimal control strategy for execution of large stock orders using long short-term memory networks
Year of publication: |
2023
|
---|---|
Authors: | Papanicolaou, Andrew ; Fu, Hao ; Krishnamurthy, Prashanth ; Healy, Brian ; Khorrami, Farshad |
Published in: |
The journal of computational finance. - London : Infopro Digital Risk, ISSN 1460-1559, ZDB-ID 1433009-X. - Vol. 26.2023, 4, p. 37-65
|
Subject: | price impact | order books | optimal execution | long short-term memory (LSTM) networks | trading volume | Handelsvolumen der Börse | Trading volume | Börsenkurs | Share price | Wertpapierhandel | Securities trading | Theorie | Theory |
-
Papanicolaou, Andrew, (2023)
-
Trade size clustering and the cost of trading at the London stock exchange
Verousis, Thanos, (2013)
-
Market depth at the BM&FBovespa
Barros, Carlos Felipe, (2014)
- More ...
-
Papanicolaou, Andrew, (2023)
-
Principal Eigenportfolios for U.S. Equities
Avellaneda, Marco, (2022)
-
Financial Fraud Detection Model Based on Random Forest
Liu, Chengwei, (2015)
- More ...