Analitic approach to solve a degenerate parabolic PDE for the Heston model
We present an analytic approach to solve a degenerate parabolic problem associated to the Heston model, which is widely used in mathematical finance to derive the price of an European option on an risky asset with stochastic volatility. We give a variational formulation, involving weighted Sobolev spaces, of the second order degenerate elliptic operator of the parabolic PDE. We use this approach to prove, under appropriate assumptions on some involved unknown parameters, the existence and uniqueness of weak solutions to the parabolic problem on unbounded subdomains of the half-plane.
Year of publication: |
2014-06
|
---|---|
Authors: | Canale, A. ; Mininni, R. M. ; Rhandi, A. |
Institutions: | arXiv.org |
Saved in:
Saved in favorites
Similar items by person
-
New measure of multifractality and its application in finances
Grech, Dariusz, (2013)
-
Point process bridges and weak convergence of insider trading models
Umut \c{C}etin, (2012)
-
Modelling emergence of money from the barter trade: multiscaling edge effects
Stanis{\l}aw Dro\.zd\.z, (2013)
- More ...