Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method
We provide a method for calculating the sample size required to attain a given average power (the ratio of rejected hypotheses to the number of false hypotheses) and a given false discovery rate (the number of incorrect rejections divided by the number of rejections) in adaptive versions of the Benjamini-Hochberg method of multiple testing. The method works in an asymptotic sense as the number of hypotheses grows to infinity and under quite general conditions, and it requires data from a pilot study. The consistency of the method follows from several results in classical areas of nonparametric statistics developed in a new context of "weak" dependence.