Approximation methods for inhomogeneous geometric Brownian motion
Year of publication: |
2019
|
---|---|
Authors: | Capriotti, Luca ; Jiang, Yupeng ; Shaimerdenova, Gaukhar |
Published in: |
International journal of theoretical and applied finance. - River Edge, NJ [u.a.] : World Scientific, ISSN 0219-0249, ZDB-ID 1428982-9. - Vol. 22.2019, 2, p. 1-16
|
Subject: | Inhomogeneous geometric Brownian motion | constant elasticity of variance | Arrow-Debreu security | derivative pricing | power series expansions | Stochastischer Prozess | Stochastic process | Derivat | Derivative | Optionspreistheorie | Option pricing theory | Volatilität | Volatility |
-
Stehlíková, Beáta, (2014)
-
On the multiplicity of option prices under CEV with positive elasticity of variance
Veestraeten, Dirk, (2017)
-
One-dimensional Markov-functional models driven by a non-Gaussian driver
Gogala, Jaka, (2019)
- More ...
-
Approximation Methods for Inhomogeneous Geometric Brownian Motion
Capriotti, Luca, (2018)
-
AAD and Least-Square Monte Carlo : Fast Bermudan-Style Options and XVA Greeks
Capriotti, Luca, (2017)
-
Real-time risk management : an AAD-PDE approach
Capriotti, Luca, (2015)
- More ...