Assessing artificial neural networks (ANNS) adequacy against econometric models for decision making approaches in banking industry
Year of publication: |
2020
|
---|---|
Authors: | Trigkas, Sotirios J. ; Liapis, Konstantinos J. |
Published in: |
Business performance and financial institutions in Europe : business models and value creation across European industries. - Cham : Springer, ISBN 978-3-030-57516-8. - 2020, p. 105-116
|
Subject: | Artificial neural networks | Banking | Decision making | Regression analysis | Neuronale Netze | Neural networks | Bank | Theorie | Theory | Regressionsanalyse | Prognoseverfahren | Forecasting model | Entscheidung | Decision |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz im Buch ; Book section ; Konferenzbeitrag ; Conference paper |
Language: | English |
Other identifiers: | 10.1007/978-3-030-57517-5_7 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Emir, Senol, (2016)
-
Probabilistic electric load forecasting : a tutorial review
Tao, Hong, (2016)
-
Are risk index models useful for firm failure prediction?
Pervan, Ivica, (2016)
- More ...
-
Liapis, Konstantinos J., (2019)
-
Liapis, Konstantinos J., (2019)
-
A Quantitative Approach to Measure Tax Competitiveness Between EU Countries
Liapis, Konstantinos J., (2014)
- More ...