Asymptotic Behavior of Heat Kernels on Spheres of Large Dimensions
Forn[greater-or-equal, slanted]2, let ([mu]x[tau], n)[tau][greater-or-equal, slanted]0be the distributions of the Brownian motion on the unit sphereSn[subset of]n+1starting in some pointx[set membership, variant]Sn. This paper supplements results of Saloff-Coste concerning the rate of convergence of[mu]x[tau], nto the uniform distributionUnonSnfor[tau]-->[infinity] depending on the dimensionn. We show that,[formula]for[tau]n:=(ln n+2s)/(2n), where erf denotes the error function. Our proof depends on approximations of the measures[mu]x[tau], nby measures which are known explicitly via Poisson kernels onSn, and which tend, after suitable projections and dilatations, to normal distributions on forn-->[infinity]. The above result as well as some further related limit results will be derived in this paper in the slightly more general context of Jacobi-type hypergroups.
Year of publication: |
1996
|
---|---|
Authors: | Voit, Michael |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 59.1996, 2, p. 230-248
|
Publisher: |
Elsevier |
Keywords: | Gaussian measures ultraspherical polynomials hypergroups convergence to equilibrium total variation distance central limit theorem |
Saved in:
Saved in favorites
Similar items by person
-
Pseudoisotropic random walks on free groups and semigroups
Voit, Michael, (1991)
-
Central limit theorems for random walks on 0 that are associated with orthogonal polynomials
Voit, Michael, (1990)
-
Anwendungsszenarien für AR in der Produktion: Use Cases und Technologielösungen
Deppe, Sahar, (2022)
- More ...