Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model
With the help of a general methodology of asymptotic expansions for mixing processes, we obtain the Edgeworth expansion for log-returns of a stock price process in Barndorff-Nielsen and Shephard's stochastic volatility model, in which the latent volatility process is described by a stationary non-Gaussian Ornstein-Uhlenbeck process (OU process) with invariant selfdecomposable distribution on . The present result enables us to simultaneously explain non-Gaussianity for short time-lags as well as approximate Gaussianity for long time-lags. The Malliavin calculus formulated by Bichteler, Gravereaux and Jacod for processes with jumps and the exponential mixing property of the OU process play substantial roles in order to ensure a conditional type Cramér condition under a certain truncation. Owing to several inherent properties of OU processes, the regularity conditions for the expansions can be verified without any difficulty, and the coefficients of the expansions up to any order can be explicitly computed.
Year of publication: |
2005
|
---|---|
Authors: | Masuda, H. ; Yoshida, N. |
Published in: |
Stochastic Processes and their Applications. - Elsevier, ISSN 0304-4149. - Vol. 115.2005, 7, p. 1167-1186
|
Publisher: |
Elsevier |
Keywords: | Edgeworth expansion Lévy process Mixing Non-Gaussian Ornstein-Uhlenbeck process Stochastic volatility model |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
How survey-to-survey imputation can fail
Newhouse, D., (2014)
-
Casting and Solidification - Prediction of As-cast Austenite Grain Size for Near-net-shape CC
Yoshida, N., (2004)
-
Quasi-likelihood analysis for the stochastic differential equation with jumps
Ogihara, T., (2011)
- More ...