Augmented Markov chain Monte Carlo simulation for two-stage stochastic programs with recourse
Year of publication: |
2014
|
---|---|
Authors: | Ekin, Tahir ; Polson, Nicholas G. ; Soyer, Refik |
Published in: |
Decision analysis : a journal of the Institute for Operations Research and the Management Sciences, INFORMS. - Catonsville, MD : Institute for Operations Research and the Management Sciences, ISSN 1545-8490, ZDB-ID 2141455-5. - Vol. 11.2014, 4, p. 250-264
|
Subject: | decision analysis | dynamic decision making | math programming | optimization | Markov chain Monte Carlo | Markov-Kette | Markov chain | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Mathematische Optimierung | Mathematical programming | Simulation | Stochastischer Prozess | Stochastic process |
-
Importance sampling in stochastic programming : a Markov chain Monte Carlo approach
Parpas, Panos, (2015)
-
Bayesian failure-rate modeling and preventive maintenance optimization
Belyi, Dmitriy, (2017)
-
Chen, Xiqun Michael, (2019)
- More ...
-
Convergence of Markov chain Monte Carlo algorithms
Polson, Nicholas G., (1993)
-
Comment: Bayesian multinominal probit models with a normalization constraint
Nobile, Agostino, (2000)
-
A Bayesian analysis of the multinominal probit model with fully identified parameters
McCulloch, Robert E., (2000)
- More ...