Automated Sensitivity Analysis for Bayesian Inference via Markov Chain Monte Carlo : Applications to Gibbs Sampling
Year of publication: |
2018
|
---|---|
Authors: | Jacobi, Liana |
Other Persons: | Joshi, Mark S. (contributor) ; Zhu, Dan (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Monte-Carlo-Simulation | Monte Carlo simulation | Sensitivitätsanalyse | Sensitivity analysis | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 9, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.2984054 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Scalable MCMC for large data problems using data subsampling and the difference estimator
Quiroz, Matias, (2015)
-
Chen, Haotian, (2017)
-
Fast, approximate MCMC for Bayesian analysis of large data sets : a design based approach
Kaeding, Matthias, (2016)
- More ...
-
Automatic Infinitesimal Perturbation Analysis for Bayesian MCMC Inference via Gibbs Samplers
Jacobi, Liana, (2020)
-
Efficient selection of hyperparameters in large Bayesian VARs using automatic differentiation
Chan, Joshua, (2020)
-
How Sensitive are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis
Chan, Joshua, (2018)
- More ...