I Introduction -- A The subject of the study -- B The method of the study -- II Mathematical Concepts for Choice Theory -- 2.1 Introduction -- 2.2 Ordering relations -- 2.3 Mappings and correspondences -- 2.4 Maximal elements and greatest elements -- 2.5 Utility functions -- III Choice Models -- 3.1 Introduction -- 3.2 Primitive concepts -- 3.3 The axioms of the preference model -- 3.4 Revealed preference -- 3.5 Favourability and revealed favourability -- 3.6 The logical significance of the preference model -- 3.7 A choice function model -- 3.8 The connection between the choice function model and the preference model -- 3.9 Some modifications of the choice function model -- 3.10 Summary of the connections between the models 5 -- IV Mathematics for Consumer Choice Theory -- 4.1 Introduction -- 4.2 Sets in real Euclidean space -- 4.3 C.u.p. sets -- 4.4 Duality -- 4.5 A theorem on c.u.p. sets -- 4.6 Some properties of real valued functions -- V A Consumer Preference Model -- 5.1 Introduction -- 5.2 Primitive concepts -- 5.3 The axioms of the consumer preference model -- 5.4 The utility function -- 5.5 The demand function and its connection with the choice function -- 5.6 Preference sets -- 5.7 Duality in consumer choice theory -- 5.8 Preordering of the price space and the dual utility function -- 5.9 Demand functions, price functions and revealed preference relations -- VI A Demand Function Model -- 6.1 Introduction -- 6.2 Primitive concepts -- 6.3 The axioms of the demand function model -- 6.4 Reconstruction of preference sets -- 6.5 The axioms of the consumer preference model as theorems in the demand function model -- References.