Backward Deep BSDE Methods and Applications to Nonlinear Problems
| Year of publication: |
2020
|
|---|---|
| Authors: | Yu, Jessica (Yajie) |
| Other Persons: | Hientzsch, Bernhard (contributor) ; Ganesan, Narayan (contributor) |
| Publisher: |
[2020]: [S.l.] : SSRN |
| Subject: | Theorie | Theory | Nichtlineare Regression | Nonlinear regression |
| Extent: | 1 Online-Ressource (25 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 13, 2020 erstellt |
| Other identifiers: | 10.2139/ssrn.3626208 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Artificial neural networks and time series of counts : a class of nonlinear INGARCH models
Jahn, Malte, (2024)
-
High-frequency estimates of the natural real rate and inflation expectations
Aronovich, Alex, (2021)
-
A universal appointment rule in the presence of no-shows and walk-Ins
Cayirli, Tugba, (2012)
- More ...
-
Pricing Barrier Options with DeepBSDEs
Ganesan, Narayan, (2020)
-
Calibrating Local Volatility Models with Stochastic Drift and Diffusion
Ogetbil, Orcan, (2023)
-
Calibrating local volatility models with stochastic drift and diffusion
Ögetbil, Orcan, (2022)
- More ...