Bayesian estimation and prediction for ACD models in the analysis of trade durations from the Polish stock market
Year of publication: |
2014
|
---|---|
Authors: | Huptas, Roman |
Published in: |
Central European journal of economic modelling and econometrics. - Lodz : Polish Academy of Sciences, ISSN 2080-0886, ZDB-ID 2529553-6. - Vol. 6.2014, 4, p. 237-273
|
Subject: | autoregressive conditional duration model (ACD model) | trade durations | financial market microstructure | Bayesian inference | Börsenkurs | Share price | Bayes-Statistik | Schätzung | Estimation | Marktmikrostruktur | Market microstructure | Aktienmarkt | Stock market | Dauer | Duration | Polen | Poland | Schätztheorie | Estimation theory | Finanzmarkt | Financial market | Statistische Bestandsanalyse | Duration analysis | Zeitreihenanalyse | Time series analysis | Wertpapierhandel | Securities trading |
-
Li, Zhicheng, (2023)
-
Intraday Value-at-Risk : an asymmetric autoregressive conditional duration approach
Liu, Shouwei, (2015)
-
A q-Weibull Autoregressive Conditional Duration Model with an Application to NYSE and HSE Data
Vuorenmaa, Tommi A., (2011)
- More ...
-
Point forecasting of intraday volume using Bayesian autoregressive conditional volume models
Huptas, Roman, (2018)
-
Huptas, Roman, (2014)
-
Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification
Huptas, Roman, (2009)
- More ...