Bayesian exploration for approximate dynamic programming
Year of publication: |
2019
|
---|---|
Authors: | Ryzhov, Ilya O. ; Mes, Martijn ; Powell, Warren B. ; Van den Berg, Gerald |
Published in: |
Operations research. - Catonsville, MD : INFORMS, ISSN 0030-364X, ZDB-ID 123389-0. - Vol. 67.2019, 1, p. 198-214
|
Subject: | approximate dynamic programming | optimal learning | Bayesian learning | correlated beliefs | value of information | Lernprozess | Learning process | Dynamische Optimierung | Dynamic programming | Bayes-Statistik | Bayesian inference | Theorie | Theory | Lernen | Learning | Mathematische Optimierung | Mathematical programming | Markov-Kette | Markov chain |
-
Bayesian inventory control : accelerated demand learning via exploration boosts
Chuang, Ya-Tang, (2023)
-
Approximated multi-agent fitted Q iteration
Lesage-Landry, Antoine, (2022)
-
Condition-based production for stochastically deteriorating systems : optimal policies and learning
Drent, Collin, (2024)
- More ...
-
The Knowledge Gradient Algorithm for a General Class of Online Learning Problems
Ryzhov, Ilya O., (2012)
-
Information Collection on a Graph
Ryzhov, Ilya O., (2011)
-
The knowledge gradient algorithm for a general class of online learning problems
Ryzhov, Ilya O., (2012)
- More ...