Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models
Year of publication: |
2014
|
---|---|
Authors: | Zhou, Xiaocong ; Nakajima, Jouchi ; West, Mike |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 30.2014, 4, p. 963-980
|
Subject: | Bayesian forecasting | Benchmark neutral portfolio | Dynamic factor models | Latent threshold dynamic models | Multivariate stochastic volatility | Portfolio optimization | Sparse time-varying loadings | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Faktorenanalyse | Factor analysis | Schätzung | Estimation | Dynamische Wirtschaftstheorie | Economic dynamics | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain |
-
Conditional value-at-risk forecasts of an optimal foreign currency portfolio
Kim, Dongwhan, (2021)
-
Improving the robustness of Markov-Switching dynamic factor models with time-varying volatility
Aumond, Romain, (2024)
-
Time-varying combinations of Bayesian dynamic models and equity momentum strategies
Basturk, Nalan, (2016)
- More ...
-
Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models
Zhou, Xiaocong, (2014)
-
Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting
McAlinn, Kenichiro, (2019)
-
Dynamic factor volatility modeling : a Bayesian latent threshold approach
Nakajima, Jouchi, (2013)
- More ...