Bayesian inference for duration data with unobserved and unknown heterogeneity : Monte Carlo evidence and an application
Year of publication: |
2004
|
---|---|
Authors: | Paserman, Marco Daniele |
Publisher: |
Bonn : Institute for the Study of Labor (IZA) |
Subject: | Statistische Bestandsanalyse | Nichtparametrisches Verfahren | Bayes-Statistik | Maximum-Likelihood-Methode | Schätzung | Jugendarbeitslosigkeit | Theorie | Vereinigte Staaten | duration data | Dirichlet process | Bayesian inference | Markov chain Monte Carlo simulation |
Series: | IZA Discussion Papers ; 996 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 378234463 [GVK] hdl:10419/20231 [Handle] |
Classification: | C41 - Duration Analysis ; C11 - Bayesian Analysis |
Source: |
-
Paserman, M. Daniele, (2004)
-
Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors
Fisher, Mark, (2018)
-
Efficient Bayesian nonparametric hazard regression
Kaeding, Matthias, (2020)
- More ...
-
Paserman, Marco Daniele, (2007)
-
Do high-skill immigrants raise productivity? Evidence from Israeli manufacturing firms, 1990 - 1999
Paserman, Marco Daniele, (2008)
-
Job search and hyperbolic discounting : structural estimation and policy evaluation
Paserman, Marco Daniele, (2004)
- More ...