Bayesian Mixed-Frequency Quantile Vector Autoregression : Eliciting Tail Risks of Monthly Us GDP
Year of publication: |
2023
|
---|---|
Authors: | Iacopini, Matteo ; Poon, Aubrey ; Rossini, Luca ; Zhu, Dan |
Publisher: |
[S.l.] : SSRN |
Subject: | VAR-Modell | VAR model | Bayes-Statistik | Bayesian inference | Nationaleinkommen | National income | Bruttoinlandsprodukt | Gross domestic product | Prognoseverfahren | Forecasting model | Schätzung | Estimation | Zeitreihenanalyse | Time series analysis | Risiko | Risk | Schock | Shock |
-
Forecasting the production side of GDP
Bäurle, Gregor, (2018)
-
Bayesian mixed-frequency quantile vector autoregression : eliciting tail risks of monthly US GDP
Iacopini, Matteo, (2023)
-
Skewed SVARS : tracking the structural sources of macroeconomic tail risks
Montes-Galdón, Carlos, (2022)
- More ...
-
Bayesian mixed-frequency quantile vector autoregression : eliciting tail risks of monthly US GDP
Iacopini, Matteo, (2023)
-
Uncertainty and the term structure of interest rates
Cross, Jamie, (2023)
-
Constructing density forecasts from quantile regressions : multimodality in macrofinancial dynamics
Mitchell, James, (2024)
- More ...