Bayesian mixed-frequency quantile vector autoregression : eliciting tail risks of monthly US GDP
| Year of publication: |
2023
|
|---|---|
| Authors: | Iacopini, Matteo ; Poon, Aubrey ; Rossini, Luca ; Zhu, Dan |
| Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 157.2023, p. 1-16
|
| Subject: | Bayesian inference | Mixed-frequency | Multivariate quantile regression | Nowcasting | VAR | VAR-Modell | VAR model | Bayes-Statistik | Prognoseverfahren | Forecasting model | Bruttoinlandsprodukt | Gross domestic product | Regressionsanalyse | Regression analysis | Schätzung | Estimation | Theorie | Theory | Risikomaß | Risk measure | Nationaleinkommen | National income | Zeitreihenanalyse | Time series analysis |
-
Forecasting the production side of GDP
Bäurle, Gregor, (2018)
-
Incorporating short data into large mixed- frequency VARs for regional nowcasting
Koop, Gary, (2023)
-
Incorporating short data into large mixed-frequency VARs for regional nowcasting
Koop, Gary, (2023)
- More ...
-
Bayesian Mixed-Frequency Quantile Vector Autoregression : Eliciting Tail Risks of Monthly Us GDP
Iacopini, Matteo, (2023)
-
Constructing Density Forecasts from Quantile Regressions : Multimodality in Macro-Financial Dynamics
Mitchell, James, (2022)
-
A new Bayesian model for contagion and interdependence
Poon, Aubrey, (2022)
- More ...