Bayesian model averaging and principal component regression forecasts in a data rich environment
Year of publication: |
July-September 2016
|
---|---|
Authors: | Ouysse, Rachida |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 32.2016, 3, p. 763-787
|
Subject: | High-dimensional models | Factor model | Bayesian variable selection | Real time forecasting | Markov Chain Monte Carlo | Rolling window forecast | Out-of-sample forecast | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model | Markov-Kette | Markov chain | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Frühindikator | Leading indicator | Prognose | Forecast | Regressionsanalyse | Regression analysis | Wirtschaftsprognose | Economic forecast | Schätzung | Estimation |
-
Chapter 15. Forecasting with Bayesian Vector Autoregression
Karlsson, Sune, (2013)
-
Time-varying sparsity in dynamic regression models
Kalli, Maria, (2014)
-
Hasumi, Ryo, (2019)
- More ...
-
Bayesian Variable Selection of Risk Factors in the APT Model
Kohn, Robert, (2007)
-
Ouysse, Rachida, (2014)
-
Consistent variable selection in large panels when factors are observable
Ouysse, Rachida, (2006)
- More ...