Bayesian optimization allowing for common random numbers
Year of publication: |
2022
|
---|---|
Authors: | Pearce, Michael Arthur Leopold ; Poloczek, Matthias ; Branke, Juergen |
Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 70.2022, 6, p. 3457-3472
|
Subject: | Bayesian optimization | common random numbers | Gaussian process regression | kriging | myopically optimal policies | Simulation | Theorie | Theory | Bayes-Statistik | Bayesian inference | Stochastischer Prozess | Stochastic process | Zufallsvariable | Random variable | Statistische Methodenlehre | Statistical theory |
-
Sampling hierarchies of discrete random structures
Lijoi, Antonio, (2020)
-
Efficient global optimization and the zero-gradient condition, in expensive simulation
Angün, Mevlüde Ebru, (2024)
-
Asymptotics for a Bayesian nonparametric estimator of species richness
Favaro, Stefano, (2011)
- More ...
-
MCDA and multiobjective evolutionary algorithms
Branke, Juergen, (2016)
-
Balancing Population- and Individual-Level Adaptation in Changing Environments
Paenke, Ingo, (2009)
-
Gallacher, Daniel, (2021)
- More ...