Bayesian quantile forecasting via the realized hysteretic GARCH model
| Year of publication: |
2022
|
|---|---|
| Authors: | Chen, Cathy W. S. ; Lin, Edward M. H. ; Huang, Tara F. J. |
| Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 41.2022, 7, p. 1317-1337
|
| Subject: | expected shortfall | hysteretic GARCH model | Markov chain Monte Carlo method | realized volatility | threshold GARCH model | value at risk | ARCH-Modell | ARCH model | Volatilität | Volatility | Risikomaß | Risk measure | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Prognoseverfahren | Forecasting model | Bayes-Statistik | Bayesian inference | Kapitaleinkommen | Capital income | Aktienindex | Stock index |
-
Improving quantile forecasts via realized double hysteretic GARCH model in stock markets
Chen, Cathy W. S., (2024)
-
Takahashi, Makoto, (2016)
-
Tail risk forecasting of realized volatility CAViaR models
Chen, Cathy W. S., (2023)
- More ...
-
Volatility forecasting with double Markov switching GARCH models
Chen, Cathy W. S., (2009)
-
Bayesian assessment of dynamic quantile forecasts
Gerlach, Richard, (2016)
-
A Bayesian perspective on mixed GARCH models with jumps
Chen, Cathy W. S., (2013)
- More ...