BLP-2LASSO for aggregate discrete choice models with rich covariates : editor's choice
| Year of publication: |
2019
|
|---|---|
| Authors: | Gillen, Benjamin J. ; Montero, Sergio ; Moon, Hyungsik Roger ; Shum, Matthew |
| Published in: |
The econometrics journal. - Oxford : Oxford University Press, ISSN 1368-423X, ZDB-ID 1475536-1. - Vol. 22.2019, 3, p. 262-281
|
| Subject: | Random-coefficients logit model | high-dimensional regressors | LASSO | elections | machine learning | big data | Logit-Modell | Logit model | Diskrete Entscheidung | Discrete choice | Künstliche Intelligenz | Artificial intelligence | Big Data | Big data | Mikroökonometrie | Microeconometrics | Schätztheorie | Estimation theory | Regressionsanalyse | Regression analysis |
-
McGibney, Daniel, (2023)
-
Macroeconomic forecasting using factor models and machine learning : an application to Japan
Maehashi, Kohei, (2020)
-
Using web-data to estimate spatial regression models
Arbia, Giuseppe, (2024)
- More ...
-
Demand estimation with high-dimensional product characteristics
Gillen, Benjamin J., (2014)
-
Estimation of Random Coefficients Logit Demand Models with Interactive Fixed Effects
Moon, Hyungsik Roger, (2017)
-
Estimation of random coefficients logit demand models with interactive fixed effects
Moon, Hyungsik Roger, (2018)
- More ...