Boltzmann-Gibbs Distribution of Fortune and Broken Time-Reversible Symmetry in Econodynamics
Within the description of stochastic differential equations it is argued that the existence of Boltzmann-Gibbs type distribution in economy is independent of the time reversal symmetry in econodynamics. Both power law and exponential distributions can be accommodated by it. The demonstration is based on a mathematical structure discovered during a study in gene regulatory network dynamics. Further possible analogy between equilibrium economy and thermodynamics is explored.