Can asymmetry, long memory, and current return information improve crude oil volatility prediction? : evidence from ASHARV-MIDAS model
| Year of publication: |
2024
|
|---|---|
| Authors: | Chen, Zhenlong ; Liu, Junjie ; Hao, Xiaozhen |
| Published in: |
Finance research letters. - New York : Elsevier Science, ISSN 1544-6123, ZDB-ID 2145766-9. - Vol. 64.2024, Art.-No. 105420, p. 1-8
|
| Subject: | ASHARV-MIDAS model | Current return information | Long memory | Volatility forecasting | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | ARCH-Modell | ARCH model | Schätzung | Estimation | Theorie | Theory | Zeitreihenanalyse | Time series analysis |
-
Wu, Xinyu, (2024)
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Park, Soyoung, (2014)
- More ...
-
Chen, Zhenlong, (2024)
-
Liu, Junjie, (2025)
-
Cross-country risk spillovers : a FHM factor copula approach
Chang, Jing, (2025)
- More ...