Can the human mind learn to backward induce? A neural network answer.
This paper addresses the question of whether neural networks, a realistic cognitive model of the human information processing, can learn to backward induce in a two stage game with a unique subgame-perfect Nash Equilibrium. The result that the neural networks only learn a heuristic that approximates the desired output and does not backward induce is in accordance with the documented difficulty of humans to apply backward induction and their dependence on heuristics.