Can the Leading Us Energy Stock Prices Be Predicted Using Ichimoku Clouds?
Year of publication: |
2020
|
---|---|
Authors: | Gurrib, Ikhlaas |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Börsenkurs | Share price | Prognoseverfahren | Forecasting model | Cloud Computing | Cloud computing |
Extent: | 1 Online-Ressource (29 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 16, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3520582 [DOI] |
Classification: | Q40 - Energy. General ; G15 - International Financial Markets ; G17 - Financial Forecasting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Can the leading US energy stock prices be predicted using the Ichimoku cloud?
Gurrib, Ikhlaas, (2021)
-
Linear and Non-Linear Granger Causality between Oil Spot and Futures Prices : A Wavelet Based Test
Alzahrani, Mohammed, (2014)
-
Variance Risk in Aggregate Stock Returns and Time-Varying Return Predictability
Pyun, Sungjune, (2019)
- More ...
-
The impact of mining and services industries on the structural change of Australia
Gurrib, Ikhlaas, (2011)
-
Early COVID-19 policy response on healthcare equity prices
Gurrib, Ikhlaas, (2021)
-
Predicting bitcoin price movements using sentiment analysis : a machine learning approach
Gurrib, Ikhlaas, (2021)
- More ...