Central limit theorems and inference for sources of productivity change measured by nonparametric Malmquist indices
| Year of publication: |
2019
|
|---|---|
| Authors: | Simar, Léopold ; Wilson, Paul W. |
| Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 277.2019, 2 (1.9.), p. 756-769
|
| Subject: | Asymptotic | DEA | Hypothesis test | Inference | Malmquist index | Data-Envelopment-Analyse | Data envelopment analysis | Produktivität | Productivity | Produktivitätsentwicklung | Productivity change | Index | Index number | Induktive Statistik | Statistical inference | Technische Effizienz | Technical efficiency | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Bootstrap-Verfahren | Bootstrap approach | Statistische Methodenlehre | Statistical theory |
-
Statistical inference for aggregation of Malmquist productivity indices
Pham, Manh, (2024)
-
Testing hypotheses in nonparametric models of production
Kneip, Alois, (2016)
-
Zelenyuk, Valentin, (2023)
- More ...
-
Quality as a latent heterogeneity factor in the efficiency of universities
Daraio, Cinzia, (2021)
-
Inference by the m out of n bootstrap in nonparametric frontier models
Simar, Léopold, (2011)
-
Kneip, Alois, (2021)
- More ...